资源类型

期刊论文 1216

会议视频 55

会议专题 1

年份

2024 3

2023 109

2022 121

2021 130

2020 96

2019 78

2018 65

2017 60

2016 48

2015 56

2014 46

2013 36

2012 32

2011 41

2010 43

2009 56

2008 45

2007 57

2006 17

2005 16

展开 ︾

关键词

高速铁路 14

力学性能 9

高质量发展 8

智能制造 6

运载系统 6

创新 5

关键技术 4

农业科学 4

城镇建设 4

技术体系 4

三峡工程 3

京沪高速铁路 3

发展 3

桥梁工程 3

高压 3

2021全球十大工程成就 2

2022全球工程前沿 2

X射线 2

严格雪崩准则 2

展开 ︾

检索范围:

排序: 展示方式:

Effect of cavity defect on the triaxial mechanical properties of high-performance concrete

Yanbin ZHANG; Zhe WANG; Mingyu FENG

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 600-614 doi: 10.1007/s11709-022-0821-5

摘要: The stress concentration of pipe structure or cavity defect has a great effect on the mechanical properties of the high-performance concrete (HPC) members in deep underground locations. However, the behaviour of HPC with cavities under triaxial compression is not understood, especially when pressurized liquid flows into the fractures from the cavity. This study aims to investigate the effect of the cavity and the confining pressure on the failure mechanisms, strengths, and deformation properties of HPC with a new experimental scheme. In this experiment, the pressurized liquid can only contact the surface of the sample in the cavity, while the other surfaces are isolated from the pressurized liquid. To further explore the effect of the cavity, the same experiments are also conducted on sealed and unsealed intact samples without a cavity. The failure modes and stress-strain curves of all types of the samples are presented. Under various confining pressures, all the samples with a cavity suffer shear failure, and there are always secondary tensile fractures initiating from the cavity sidewall. Additionally, it can be determined from the failure modes and the stress-strain curves that the shear fractures result from the sidewall failure. Based on the different effects of the cavity on the lateral deformations in different directions, the initiation of the sidewall fracture is well predicted. The experimental results show that both the increase of the confining pressure and the decrease of the cavity size are conducive to the initiation of sidewall fracture. Moreover, the cavity weakens the strength of the sample, and this study gives a modified Power-law criterion in which the cavity size is added as an impact factor to predict the strength of the sample.

关键词: high-performance concrete     cavity     conventional triaxial compression     pressurized liquid     modified power-law criterion    

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposedto high temperatures

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1316-1330 doi: 10.1007/s11709-020-0646-z

摘要: In this study, the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and 20%. Cube specimens (100 mm × 100 mm × 100 mm) were prepared for testing the compressive strength and ultrasonic pulse velocity. They were cured at 20°C±2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good prediction ability with little experimental data, was a convenient method for civil engineering.

关键词: concrete     high temperature     strength properties     deep learning     stacked auto-encoders     LSTM network    

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1267-1279 doi: 10.1007/s11705-022-2291-7

摘要: The emergence of vitrimer, a new class of polymer materials can address the problem of recyclability, reprocess ability and recyclability of thermosetting plastics. Rosin, a natural product, is an ideal raw material for the preparation of polymers in a more sustainable way. Nevertheless, due to the huge steric hindrance caused by the hydrogenated phenanthrene ring structure, the cross-link density of materials is frequently lowered. In this study, hydrogenated rosin was adopted for preparing hydrogenated rosin side-chain type diacids, which were reacted with mixed epoxy to obtain rosin side-chain type vitrimers. It was completely characterized by differential scanning calorimetry test, thermogravimetric analysis, shape memory test and self-healing test. The prepared vitrimers exhibited good self-healing properties, excellent heat resistance (Td = 352 °C) as well as high mechanical properties (tensile strength of 46.75 MPa). The tricyclic diterpene structure of rosin was introduced into the side chain in order to avoid the reduction of cross-link density resulting from the huge steric hindrance of the rigid tricyclic hydrophenylene skeleton. Vitrimers can undergo dynamic transesterification reaction without external catalysts due to the autocatalytic effect of tertiary amines from epoxy. Moreover, our work expanded the application field of rosin, increased the added value of rosin, and provided a novel method for preparing rosin-based vitrimers with ideal properties.

关键词: vitrimers     rosin     catalyst-free     high mechanical properties     dynamic transesterification reaction    

Exploring the mechanical properties of steel- and polypropylene-reinforced ultra-high-performance concrete

《结构与土木工程前沿(英文)》   页码 1228-1248 doi: 10.1007/s11709-023-0931-8

摘要: This study presents experimental and numerical investigations on the mechanical properties of ultra-high-performance concrete (UHPC) reinforced with single and hybrid micro- and macro-steel and polypropylene fibers. For this purpose, a series of cubic, cylindrical, dog-bone, and prismatic beam specimens (total fiber by volume = 1%, and 2%) were tested under compressive, tensile, and flexural loadings. A method, namely multi-target digital image correlation (MT-DIC) was used to monitor the displacement and deflection values. The obtained experimental data were subsequently used to discuss influential parameters, i.e., flexural strength, tensile strength, size effect, etc. Numerical analyses were also carried out using finite element software to account for the sensitivity of different parameters. Furthermore, nonlinear regression analyses were conducted to obtain the flexural load-deflection curves. The results showed that the MT-DIC method was capable of estimating the tensile and flexural responses as well as the location of the crack with high accuracy. In addition, the regression analyses showed excellent consistency with the experimental results, with correlation coefficients close to unity. Furthermore, size-effect modeling revealed that modified Bazant theory yielded the best estimation of the size-effect phenomenon compared to other models.

关键词: UHPC     MT-DIC     flexural behavior     tensile behavior     steel fiber     polypropylene fiber    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1254-1266 doi: 10.1007/s11705-023-2297-3

摘要: To enhance the mechanical properties and wear resistance of epoxy resin, polyaniline nanorods were first synthesized using a facile route, and then introduced into the epoxy matrix to yield composites via solution mixing. Several measurements were conducted to investigate the phase structures and compositions of polyaniline nanorods, and their positive influences on the mechanical and tribological properties of epoxy resin were also characterized. The results confirmed that the as-synthesized polyaniline exhibited representative rod-like morphologies and dispersed well in the epoxy matrix, leading to significant enhancements in the tensile strength and elastic modulus of epoxy composites. The highest values of 110.33 MPa and 2.04 GPa were obtained by adding 5%–7% polyaniline nanorods, which were 43% and 62% higher than the pure sample, respectively. The wear rate was increased first and then decreased along with polyaniline nanorods, presenting the lowest value of 2.12 × 10−5 mm3·Nm–1 by adding 5% filler, which was markedly reduced by ca. 70% compared to the control sample. Finally, the possible wear mechanism was proposed and discussed in detail. This study tried to broaden the applications of polyaniline nanorods in the field of tribology.

关键词: epoxy resin     polyaniline nanorods     mechanical property     tribological performance     wear mechanism    

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 495-503 doi: 10.1007/s11709-018-0492-4

摘要: Phagraphene is a very attractive two-dimensional (2D) full carbon allotrope with very interesting mechanical, electronic, optical, and thermal properties. The objective of this study is to investigate the mechanical properties of this new graphene like 2D material. In this work, mechanical properties of phagraphene have been studied not only in the defect-free form, but also with the critical defect of line cracks, using the classical molecular dynamics simulations. Our study shows that the pristine phagraphene in zigzag direction experience a ductile behavior under uniaxial tensile loading and the nanosheet in this direction are less sensitive to temperature changes as compared to the armchair direction. We studied different crack lengths to explore the influence of defects on the mechanical properties of phagraphene. We also investigated the temperature effect on the mechanical properties of pristine and defective phagraphene. Our classical atomistic simulation results confirm that larger cracks can reduce the strength of the phagraphene. Moreover, it was shown the temperature has a considerable weakening effect on the tensile strength of phagraphene. The results of this study may be useful for the design of nano-devices using the phagraphene.

关键词: phaqraphene     mechanical properties     crack propaqation     molecular dynamics     thermal effects    

Assessment and prediction of the mechanical properties of ternary geopolymer concrete

Jinliang LIU; Wei ZHAO; Xincheng SU; Xuefeng XIE

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1436-1452 doi: 10.1007/s11709-022-0889-y

摘要: This paper utilized granulated blast furnace slag (GBFS), fly ash (FA), and zeolite powder (ZP) as the binders of ternary geopolymer concrete (TGC) activated with sodium silicate solution. The effects of alkali content (AC) and alkaline activator modulus (AAM) on the compressive strength, flexural tensile strength and elastic modulus of TGC were tested and the SEM micrographs were investigated. The experimental results were then compared with the predictions based on models of mechanical properties, and the amended models of TGC were proposed taking account of the effects of AC and AAM. The results indicated that increasing AC and reducing AAM which were in the specific ranges (5% to 7% and 1.1 to 1.5, respectively) had positive effects on the mechanical properties of TGC. In addition, the flexural tensile strength of TGC was 27.7% higher than that of OPC at the same compressive strength, while the elastic modulus of TGC was 25.8% lower than that of OPC. Appropriate prediction models with the R2 of 0.945 and 0.987 for predicting flexural tensile strength and elastic modulus using compressive strength, respectively, were proposed. Fitting models, considering the effects of AC and AAM, were also proposed to predict the mechanical properties of TGC.

关键词: Ternary Geopolymer Concrete (TGC)     alkaline activator modulus     alkali content     mechanical properties     assessment    

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 792-802 doi: 10.1007/s11709-022-0849-6

摘要: Polyethylene terephthalate bottles production has drastically increased year after year due to high versatility of polyethylene terephthalate plastics and considerable consumption of beverages. In tandem with that increase, the major concern of society has been the improper disposal of this non-biodegradable material to the environment. To deal with this concern, recycled polyethylene terephthalate bottles were incorporated in concrete as fibre reinforcements in this study. The objective of this research is to evaluate the mechanical properties of recycled polyethylene terephthalate fibre reinforced concrete (RPFRC) in comparison with control concrete without fibres. polyethylene terephthalate fibres with three different diameters (0.45, 0.65, and 1.0 mm) and two lengths (20 and 30 mm) were added at various proportions (0.5%, 1.0%, 1.5% and 2.0%) by volume of concrete in order to determine the effect of fibres initially on compressive, flexural and splitting tensile strengths of concrete. The results revealed that none of the fibres have detrimental effects up to 1% volume fraction, however further addition caused slight reductions on mechanical properties in some conditions. Plastic shrinkage resistance and impact resistance tests were also performed according to related standards. Polyethylene terephthalate fibres were observed to have marked improvements on those properties. Such a good performance could be attributed primarily to the bridging effect of fibres.

关键词: recycled PET     fibre-reinforced concrete     mechanical properties     plastic shrinkage     impact energy    

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 36-45 doi: 10.1007/s11709-014-0243-0

摘要: This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials ( / ) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.

关键词: admixture     conventional concrete (CC)     creep     fracture mechanic     mechanical Properties     self-consolidating concrete (SCC)     shrinkage    

Unified calculation method and its application in determining the uniaxial mechanical properties of concrete

Faxing DING, Xiaoyong YING, Linchao ZHOU, Zhiwu YU

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 381-393 doi: 10.1007/s11709-011-0118-6

摘要: This paper presents a unified calculation method and its application in determining the uniaxial mechanical properties of concrete with concrete strengths ranging from 10 to 140 MPa. By analyzing a large collection of test results of the uniaxial mechanical properties of normal-strength, high-strength and super high-strength concrete in China and performing a regression analysis, unified calculation formulas for the mechanical indexes of concrete are proposed that can be applied to various grades of concrete for determining the size coefficient, uniaxial compressive strength, uniaxial tensile strength, elastic modulus, and strain at peak uniaxial compression and tension. Optimized mathematical equations for the nonlinear stress-strain relationship of concrete, including the ascending and descending branches under uniaxial stress, are also established. The elastic modulus is almost constant throughout the elastic stage for the ascending branches of the stress-strain relationship for concrete. The proposed stress-strain relationship of concrete was applied to the nonlinear finite element analysis of both a steel-concrete composite beam and a concrete-filled steel tubular stub column. The analytical results are in good agreement with the experiment results, indicating that the proposed stress-strain relationship of concrete is applicable. The achievements presented in this paper can be used as references for the design and nonlinear finite element analysis of concrete structures.

关键词: concrete     mechanical properties     stress-strain relationship     uniaxial stress     application    

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0746-2

摘要: This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.

关键词: austempered ductile iron (ADI)     vanadium alloying     mechanical properties     crankshafts     retained austenite    

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 834-850 doi: 10.1007/s11709-021-0743-7

摘要: The concept of steel sheet glass fiber reinforced polymer (GFRP) composite bar (SSGCB) was put forward. An optimization plan was proposed in the combined form of SSGCB. The composite principle, material selection, and SSGCB preparation technology have been described in detail. Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties. Mechanical tests such as uniaxial tensile, shear, and compressive tests were carried out on SSGCB. Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB. The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content. Shear strength was also increased with the addition of steel content. Furthermore, the yield state of SSGCB was similar to the steel bar, both of which indicated a multi-stage yield phenomenon. The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content. Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars.

关键词: steel sheet GFRP composite bar     combination form     numerical modeling     mechanical properties test     strength    

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1460-1469 doi: 10.1007/s11705-023-2335-7

摘要: Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

关键词: Ti3C2Tx MXene     double crosslinking     mechanical properties     EMI shielding performance    

标题 作者 时间 类型 操作

Effect of cavity defect on the triaxial mechanical properties of high-performance concrete

Yanbin ZHANG; Zhe WANG; Mingyu FENG

期刊论文

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposedto high temperatures

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

期刊论文

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

期刊论文

Exploring the mechanical properties of steel- and polypropylene-reinforced ultra-high-performance concrete

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

期刊论文

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

期刊论文

Assessment and prediction of the mechanical properties of ternary geopolymer concrete

Jinliang LIU; Wei ZHAO; Xincheng SU; Xuefeng XIE

期刊论文

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

期刊论文

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

期刊论文

Unified calculation method and its application in determining the uniaxial mechanical properties of concrete

Faxing DING, Xiaoyong YING, Linchao ZHOU, Zhiwu YU

期刊论文

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

期刊论文

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

期刊论文

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

期刊论文

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

期刊论文